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ABSTRACT 
 
Single-kernel near-infrared spectroscopy has been used to measure many grain attributes such 
as protein, oil, internal insects, transgenic traits, and fungal damage.  Analysis of single kernels 
instead of bulk samples has the advantage of detecting attributes that may only be present in a 
few kernels in a sample. It can also give the distribution of measured attributes.  This paper 
reviews manual and automated, reflectance and transmittance, and low-speed and high-speed 
single-kernel NIRS analysis and sorting systems. 
 
 
Near-infrared spectroscopy (NIRS) is commonly used for measuring characteristics of 
biological materials.  Advantages that make this technology a viable alternative to many 
analytical techniques include little or no sample preparation, measurements in <1s, and 
spectrometers that cost less than $2000.  Williams and Norris (2001) reviewed the physics of 
NIRS and summarized the use of this technology for measuring constituents such as protein and 
moisture since its earliest applications about 30 years ago.  The technology has progressed to 
include predictions of functionality parameters such as protein composition, biochemical 
properties, dough-handling properties, and bread quality (Delwiche and Weaver 1994; Delwiche 
et al 1998).   
 
Until the mid-1990’s, predictions were made only from ground or whole-grain bulk samples.  
Ground sample predictions have the advantage of lower experimental error than whole-grain 
analysis partly because of less influence of particle size on NIR absorption, and constituents are 
more uniformly mixed throughout the sample.  Disadvantages of analyzing ground samples 
include sample presentation errors caused by packing variability, and the sample is destroyed.  
Whole-grain analysis advantages include reducing analysis time since little sample preparation 
is needed, and the kernels are preserved for other analyses.  However, analysis of bulk samples 
may not detect grain attributes such as fungal or insect damage that are not present in all, or 
most, kernels.  Also, bulk-sample analysis does not indicate if an attribute, such as protein, 
follows a normal, binomial, or skewed distribution in a sample.  Information about the 
distribution of attributes within a sample can indicate if a lot has been mixed with extreme 
ranges of attributes in order to arrive at an average value. 
 
To address some of the limitations of bulk-sample analysis, NIRS was adapted for analysis of 
single kernels in the mid-1990’s.  Advantages of single-kernel analysis include that it can detect 
attributes that may only be present in a few kernels from a bulk sample, and it can provide 
information about distribution of attributes within a sample.  In addition, specific kernels can be 
preserved for further analysis or used to propagate specific traits in breeding programs.  This 
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paper provides a review of single-kernel NIRS measurement technology, and the accuracy and 
feasibility of this technology. 
 

Single-Kernel Measurement Technology 
 
Manual Systems -- Transmittance 
 
Many spectrometers can be fitted with fiber optic probes to facilitate collecting spectra from 
small objects manually placed in the field of view.  Much of the early single-kernel NIRS work 
used transmitted energy and scanning spectrometers with silicon sensors (Delwiche 1993, 1995; 
Finney and Norris 1978; Lamb and Hurburgh 1991; Orman and Schumann 1992).  While the 
performance of these spectrophotometers can be very good, they can require several minutes to 
collect one spectrum.  Also, many of these spectrometers contained silicon (Si) sensors and 
were thus limited to the 400-1100 nm range (Table 1).  Most of this early work measured only 
major constituents such as protein, oil, moisture, and hardness.   
 
Manual Systems -- Reflectance 
 
In the mid-1990’s, lead-sulfide (PbS, 1100-2500 nm) and indium-galium-arsinide (InGaAs, 
1100-1700 nm) sensors became more commonly used in spectrometers, although they had been 
available for many years. Whereas Si sensors can only measure absorbance in the third overtone 
region, PbS and InGaAs sensors can measure absorptions in the first and second overtone 
regions.  Stronger absorptions in these regions allow measurement of additional attributes of 
biological materials.   
 
In addition to using other sensors, researchers began collecting diffuse reflectance spectra 
instead of transmittance spectra because it may be easier to develop an automated single-kernel 
NIR system that uses reflected energy, and less energy is required to collect diffuse reflectance 
spectra versus transmittance spectra.  Examples of attributes that could now be predicted with 
these sensors that measure absorbance at longer wavelengths include major constituents such as 
protein content (Delwiche 1998; Delwiche and Hruschka 2000) and attributes such as wheat 
class (Delwiche and Massie 1996); color class (Wang 1999a, 1999b, 1999c; Dowell 1997; Ram 
et al 2002); internal insects (Baker et al 1999; Ridgway and Chambers 1996; Cheewapramong 
and Wehling 2001); scab, deoxynivalenol, and ergosterol in wheat (Dowell et al 1998a, 1999); 
kernel vitreousness (Dowell 2000); heat damage (Wang 2001); transgenic corn (Avidin) 
(Kramer et al 2000); aflatoxin and fumonisin in corn (Pearson et al 2001; Dowell et al 2002a); 
and pecky rice (Wang et al 2002) (Table 1). 
 
Automated Systems 
 
In the late 1990’s, several companies started marketing automated single-kernel NIR systems.  
Perten Instrument (Springfield, Ill.) introduced an automated system (SKCS 4170) for small 
grains that consisted of a kernel singulator coupled with a Si-InGaAs diode-array spectrometer 
(400-1700 nm).  This system was developed through a cooperative research and development 
agreement with the Engineering Research Unit of the USDA ARS Grain Marketing and 
Production Research Center, Manhattan, Kan.  The system can collect spectra at a rate of 1 
kernel/2s and uses reflected energy.  It has been used to measure moisture, grain hardness, color 
class, protein, internal insects, and bunted kernels in wheat (Dowell et al 1997, 1998; Dowell 
1998; Maghirang and Dowell 2002; Maghirang et al 2002) (Table 1).   Brimrose (Baltimore, 
Md.) markets a system (Seedmeister) for large grains such as corn.  This system consists of a 
kernel singulator and an acousto-optic tunable filter, and has a wavelength range of 900-1600 
nm.  This system can process and sort 1 kernel/s and uses transmitted energy.  The cost of each 
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of the Perten and Brimrose systems is about $100,000, and both systems are used in several 
research facilities.  
 
The Engineering Research Unit of the USDA ARS Grain Marketing and Production Research 
Center, Manhattan, Kan., has recently developed a simplified single-kernel NIR sensing and 
sorting system that utilizes a low-cost InGaAs sensor.  Perten Instruments is currently 
developing a commercial version of this lower-cost prototype.  InGaAs diode-array sensors can 
be purchased for <$5000, and Si diode-array sensors can be purchased for <$2000.  This 
decrease in cost, while maintaining accuracy and speed similar to higher cost systems, may 
make it possible to assemble an automated single-kernel NIR system at a fraction of the cost of 
the original commercial systems. 
 
High-Speed Sorting 
 
High-speed sorters have commonly been used to remove visible defects in commodities, and 
recently InGaAs sensors have been incorporated into these systems. Inspection and sorting with 
these instruments can occur at a rate as high as 10,000 kernels/s, or about 1100 kg/hr (40 bu/hr).  
Dowell et al (2002b) used a ScanMaster II SM100IE (Satake USA Inc, Houston, Texas) to 
remove bunted kernels from uninfected seed with 100% accuracy (Table 1).  They have also 
recently used this technology to remove red wheat from white wheat stock (Pasikatan and 
Dowell 2002), and to sort into high and low protein groups.  While these systems cannot 
quantify levels of attributes in single kernels and are limited to one or two wavelengths, they 
can rapidly sort samples into two groups that have distinctly different traits.  Breeders are now 
using this technology to purify seed stock, and it may have additional applications in the grain 
industry. 
 

Single-Kernel Measurement Accuracy and Feasibility 
 
Literature shows that many attributes of single kernels can be measured by reflectance and 
transmittance spectroscopy with standard errors that are usually suitable for screening purposes 
(Table 1).  While the standard error of single-kernel analysis may be twice that of bulk-sample 
analysis, the benefit of knowing the distribution of attributes within a sample outweighs this 
loss in accuracy for many applications.  The increase in sensitivity and reductions in cost as this 
technology advances will help increase its acceptance in all industry segments.   
 
While many attributes can be measured with this technology, it is limited to those that are 
present in sufficient quantities to significantly affect NIR absorption.  Thus, it may not be 
possible to detect attributes that comprise <0.1% of the kernel mass.  It is useful for detecting 
the presence of internal insects and predicting the level of protein or oil, but it may not be useful 
for detecting minute traces of some attributes such as those that may be associated with some 
transgenic traits and are present at the ppm or ppb level.  While literature shows that levels of 
transgenic traits, fumonisin, and aflatoxin in corn (Kramer et al 2000; Pearson et al 2001; 
Dowell et al 2002a) and vomitoxin in wheat (Dowell et al 1999b) can be predicted, the standard 
errors of these predictions are very high.  The ability of NIRS to predict levels of transgenic 
traits or toxins is likely due to the high correlation of these attributes to changes in other 
intrinsic characteristics such as protein levels, vitrousness, changes in the protein-starch matrix, 
etc.   
 
In summary, single-kernel NIRS provides the grain industry with a useful tool for measuring the 
distribution of attributes within samples, and provides a means to measure attributes such as 
internal insects and fungal damage that may be present in a small percentage of kernels.  
Current cost reductions and increases in sensor sensitivities, combined with sorting capabilities, 
should help this technology gain widespread use throughout all industry segments. 
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